Molecular-scale insights into the mechanisms of ionic liquids interactions with carbon nanotubes.
نویسندگان
چکیده
By means of fully atomistic molecular simulations we study basic mechanisms of carbon nanotube interactions with several different room temperature ionic liquids (RTILs) in their mixtures with acetonitrile. To understand the effects of the cation molecular geometry on the properties of the interface structure in the RTIL systems, we investigate a set of three RTILs with the same TFSI (bis (trifluoromethylsulfonyl)imide) anion but with different cations, namely, EMIm (1-ethyl-3-methylimidazolium), BMIm (1-butyl-3-methylimidazolium) and OMIm (1-octyl-3-methylimidazolium) ions. The cations have identical charged methylimidazolium 'heads' but different nonpolar alkyl 'tails' where the length of the tail increases from EMIm to OMIm. The analysis of the simulation data results in the following conclusions: There is an enrichment of all molecular components of ionic liquids under study at the CNT surface with formation of several distinct layers even at the non-charged CNT surface. Mixing RTIL with acetonitrile decreases ion-counterion correlations in the electric double layer. Increase of the length of the non-polar 'tail' of cations increases the propensity of imidazolium-based cations to lay parallel to the CNT surface. At the CNT cathode TFSI anions and molecular cations are preferentially oriented parallel to the surface. At the CNT anode the TFSI anions are oriented parallel to the surface, however the preferred orientations of cations depend on the length of non-polar tail: EMIm cations are oriented perpendicular to the surface, BMIm cations can be in both parallel as well as perpendicular orientations, OMIm cations are oriented parallel to the surface. As a result, by applying an electric potential on the CNT electrode and/or varying the structure of molecular ions it is possible to change molecular ion orientations at the surface and, consequently, the structure of the electrical double layer at the CNT-RTIL interface.
منابع مشابه
Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids.
Spectroscopic and molecular modeling studies were performed to investigate the underlying dispersion mechanism of single-walled carbon nanotubes (SWCNTs) in imidazolium-based ionic liquids. Both the experimental and the simulation evidence indicate that the ionic liquids interact with SWCNTs through weak van der Waals interaction other than the previous assumed "cation-pi" interaction. Therefor...
متن کاملAtomically precise understanding of nanofluids: nanodiamonds and carbon nanotubes in ionic liquids.
A nanofluid (NF) is composed of a base liquid and suspended nanoparticles (NPs). High-performance NFs exhibit significantly better heat conductivities, as compared to their base liquids. In the present work, we applied all-atom molecular dynamics (MD) simulations to characterize diffusive and ballistic energy transfer mechanisms within nanodiamonds (NDs), carbon nanotubes (CNTs), and N-butylpyr...
متن کاملIndividual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids.
The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered ...
متن کاملTheoretical insights into the encapsulation of anticancer Oxaliplatin drug into single walled carbon nanotubes
The present work was an attempt to evaluate the potentialities of using SWCNTs as nanovectors for drug delivery of anticancer drug Oxaliplatin. First-principles van der Waals density functional (vdW-DF) calculations are used to investigate the incorporation of oxaliplatin inside the typical semiconducting and metallic single wall carbon nanotubes with various diameters (SWCNTs). Adsorption ener...
متن کاملCarbon-Based Nanomaterials Functionalized with Ionic Liquids for Microextraction in Sample Preparation
A large number of carbon-based nanomaterials has been investigated as sorbents in sample preparation, including fullerenes, carbon nanotubes, nanofibers, nanohorns and graphene, as well as their functionalized forms. Taking into account their properties, carbon-based nanomaterials have found a wide range of applications in different sample preparation techniques. Ionic liquids, as an alternativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 154 شماره
صفحات -
تاریخ انتشار 2012